Local Meshless Method for the Numerical Solution of the Two-Dimensional Nonlinear Burger’s Equations
نویسندگان
چکیده
This paper examines the numerical solution of the nonlinear coupled Burger’s equations with various values of viscosity by local meshless methods. The local radial basis functions collocation method (LRBFCM) belongs to the class of truly meshless methods which do not need any underlying mesh but work on a set of uniform or random nodes only, without any a priori node to node connectivity. The numerical solution obtained from the LRBFCM for different value of viscosity parameter are compared with analytical solution as well as other numerical methods. Time discretization is performed in explicit way and collocatio with the multiquadric radial basis functions (RBFs) are used to interpolate diffusion-convection variable and its spatial derivatives. Five nodded sub-domains are used in the local support. Accuracy of the method is assessed as a function of the time and space discretizations. It can be easily seen that the proposed method is efficient, accurate and stable for high Reynolds numbers. 1 Abstract at NumAn2010 numan2010.science.tuc.gr — Conference in Numerical Analysis, Chania, Greece, Sept 15-18, 2010
منابع مشابه
A Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملThree dimensional static and dynamic analysis of thick plates by the meshless local Petrov-Galerkin (MLPG) method under different loading conditions
In this paper, three dimensional (3D) static and dynamic analysis of thick plates based on the Meshless Local Petrov-Galerkin (MLPG) is presented. Using the kinematics of a three-dimensional continuum, the local weak form of the equilibrium equations is derived. A weak formulation for the set of governing equations is transformed into local integral equations on local sub-domains by using a uni...
متن کاملA numerical solution of mixed Volterra Fredholm integral equations of Urysohn type on non-rectangular regions using meshless methods
In this paper, we propose a new numerical method for solution of Urysohn two dimensional mixed Volterra-Fredholm integral equations of the second kind on a non-rectangular domain. The method approximates the solution by the discrete collocation method based on inverse multiquadric radial basis functions (RBFs) constructed on a set of disordered data. The method is a meshless method, because it ...
متن کاملNumerical Simulation of 1D Linear Telegraph Equation With Variable Coefficients Using Meshless Local Radial Point Interpolation (MLRPI)
In the current work, we implement the meshless local radial point interpolation (MLRPI) method to find numerical solution of one-dimensional linear telegraph equations with variable coefficients. The MLRPI method, as a meshless technique, does not require any background integration cells and all integrations are carried out locally over small quadrature domains of regular shapes, such as lines ...
متن کاملA truly meshless method formulation for analysis of non-Fourier heat conduction in solids
The non-Fourier effect in heat conduction is important in strong thermal environments and thermal shock problems. Generally, commercial FE codes are not available for analysis of non-Fourier heat conduction. In this study, a meshless formulation is presented for the analysis of the non-Fourier heat conduction in the materials. The formulation is based on the symmetric local weak form of the sec...
متن کامل